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Abstract

We introduce a distributed sensor architecture
which enables high-performance 32-bit Linux
capabilities to be embedded in a sensor which
operates at the average power overhead of a
small microcontroller. Adapting Linux to this
architecture places increased emphasis on the
performance of the Linux power-up/shutdown
and suspend/resume cycles.

Our reference hardware implementation is de-
scribed in detail. An acoustic beamforming
application demonstrates a 4X power improve-
ment over a centralized architecture.

1 Introduction

Traditional sensor platform architectures are
based on a hub-and-spoke model with periph-
erals clustered around a central processor as
shown in Figure 1(a). In this model, the lower-
bound of total system power is set by the low-
est active mode of the central processor which
must be continually active to broker peripheral
operations.

System power is typically reduced by using
less-capable processors or microcontrollers in
place of the central processor. Although sensor
activity is mostly infrequent and bursty with
low average computational requirements, peak
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Figure 1: Alternate sensor node architectures

processing requirements can still be quite high.
Within a system design, this creates tension be-
tween the desire for the high-performance pro-
cessing capability of a larger processor and the
low-power operation of a smaller one.

This tension is further complicated by the ob-
servation that while many large processors re-
quire significantly more power than small ones
when inactive, they also often provide signifi-
cantly more power-efficient computation when
active. Another tradeoff in this design space
weighs the strength of development and de-
bugging tools, such as Linux, available for
larger processors versus the constrained pro-
gramming environments available for small
ones.

Replacing the hub-and-spoke architecture with
a distributed model as shown in Figure 1(b)
can decouple processing from peripheral op-
eration and create a system that combines the
strengths of both large and small processors.



In this model, processor and peripherals be-
come autonomous modules that are each pow-
ered independently. High-performance pro-
cessing can be made available when needed,
but without increasing the lower-bound of to-
tal system power. Low average system power
can be achieved by operating for a majority of
the time in extremely low-power modes with
only essential modules active.

This distributed architecture places Linux in an
unconventional role as a peer module rather
than as a central processor. This emphasizes
the performance of the power-up/shutdown and
suspend/resume cycles as keys for achieving
low average system power.

The remainder of this paper is organized as fol-
lows. Section 2 describes several popular re-
search and commercial sensor platforms. Sec-
tion 3 recounts the design challenges we faced
as we built a reference sensor node with au-
tonomous modules. As usual, real-world issues
forced difficult engineering decisions. Sec-
tion 4 details the modules we have built so far.

Our hardware is in a more complete state than
our software. We have identified some aspects
of the behavior of Linux that we need to inves-
tigate more fully. These issues are discussed
in Section 5. Section 6 contains power results
we have obtained with a vehicle tracking algo-
rithm. Finally, Section 7 draws conclusion and
Section 8 describes areas for future work.

2 Related Work

Applied research in wireless sensor networks
has made use of a variety of platforms with
varying processing capabilities and power re-
quirements, but almost always with a hub-and-
spoke model. Several platforms are described

below in order from more-capable, higher-
power platforms to less-capable, lower-power
platforms.

2.1 PC/104

PC/104 [3] is a well-supported specification for
PC-compatible, embedded systems consisting
of stacking modules. Cerpa et al [2] chose
PC/104 systems for their “high end” sensors
in a tiered deployment for habitat monitoring.
Their cited reasons for choosing PC/104 in-
clude the ability to run PC-compatible software
(ie. Linux) and the wide spectrum of available
PC/104 modules.

PC/104 provides great flexibility and the power
requirements are lower than that of desktop
PCs. However, at 1-2 Watts per module[3], and
with most sensors requiring at least two mod-
ules, this platform requires too much power for
many sensor applications.

2.2 Embedded StrongARM devices/PDAs

Off-the-shelf devices based on low-power, em-
bedded processors such as the Intel SA-1110
or PXA25x offer another convenient platform
for sensor network research. Compared to x86-
class processors, these processors offer a sig-
nificant power savings along with a reduction
in maximum clock rate and the absence of a
hardware floating-point unit.

Representative devices of this class include the
HP iPAQ, the CerfCube[4], and the Crossbow
Stargate[14]. These devices are extensible via
Compact Flash, Bluetooth, etc. but have less
flexibility than PC/104. And while the power
requirements of these systems can be less than
a comparable PC/104 stack, Mainwaring et
al[9] found that at 2.5W active power, the
power usage of the CerfCube was excessive for
long-term use in a sensor network.
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Figure 2: Power-aware sensor concept

Several research sensors have been developed
with architectures similar to these off-the-shelf
platforms. These include theµAMPS[10] and
WINS[1] nodes. For example, the WINS node
has a central 133MHz StrongARM SA-1100
processor along with radio and sensor periph-
erals. As measured by Raghunathan et al[12]
the WINS node operates in the range of 360-
1080 mW and can also be placed into a 64 mW
sleep mode.

2.3 Motes

An example of a very low-power sensor ar-
chitecture is that of the Berkeley Motes[6, 7,
8]. Current Motes are based around a central
microcontroller (MCU) such as the ATmega
90LS8535, an 8-bit MCU with 128KB Flash
and 8KB SRAM. The Mote includes a radio
and has serial connections and 10-bit analog
ADC ports to various sensors on expansion
modules. Typical power consumption for this
sensor when active is in the 10-100 mW range.
Sleep power is about 60µW.

Mote-class sensors demonstrate that a wide
variety of low-bandwidth sensing applications
can be accomplished with very small proces-
sors and with very little memory. The limita-
tion of these systems is encountered when an
application doesn’t fit within the memory and
processing footprint of the MCU. High band-
width sensor processing is beyond the capabil-
ities of these small-scale sensors and there is
little room for expansion.

3 Implementation

Our primary system design goal was to con-
struct a family of interchangeable processor,
sensor, and communication modules that can
be mixed and matched according to the appli-
cation requirements. Ideally, our architecture
would be able scale from simple sensors as
shown in Figure 2(a) and Figure 2(b), to com-
plex sensors as shown in Figure 2(c) without
having to learn and port to a new platform at
every scale.



Other goals were driven by practical experi-
ences of using other platforms in the field.
Rapid prototyping is an important concern.
The ability to create testbeds using COTS pe-
ripherals is a strength of platforms such as
PC/104. Availability of Linux device drivers
and a friendly programming environment were
strong motivators in our implementation deci-
sions. Data collection is an important step in
sensor network algorithm development. We
wanted lots of data storage and data network-
ing options in our new platform.

Primary constraints on the system design in-
clude size and power. We targeted the size
of the Berkeley Mote, while still supporting a
Linux-capable processor in the stack. In the
end, the size was dictated by the minimum
footprint of a Compact Flash socket and our
chosen stack connector. Power in our system
needs to be able to scale from 1 mW to a few
Watts. The low power target limited many of
our implementation choices.

An early design decision was how the au-
tonomous modules would communicate. Inter-
faces such as ethernet were quickly dismissed
due to power requirements. In small embedded
devices, the most power-efficient communica-
tion is available with hardware-supported inter-
faces such as Serial Peripheral Interface (SPI),
Controller Area Network (CAN), Universal
Asynchronous Receiver Transmitter (UART),
and Inter-Integrated Circuit (IIC or I2C). Each
of these interfaces has strengths and weak-
nesses. I2C supports multi-master operation,
but has a limit of 100kbps on most devices. SPI
has faster transfers, (up to a few megabits per
second), but has limited multi-master support
in most devices and little flow control. UART
is widely supported, but requires clock agree-
ment on both interfaces. CAN is multi-master,
but the bus drivers in the supporting devices are
relatively high power, (since CAN is designed
for long cables).

We decided to support the three major interface
standards (I2C, SPI, and UART). We allocated
six 8-bit channels on our connector and spec-
ified two preferred channels for each standard
interface. In order to prevent bus contention
and power leakage when modules are off, all
modules have bus isolation switches between
themselves and the connector. We also intro-
duced a separate I2C control network for mod-
ule discovery and coordination of the switches.

A small microcontroller (MCU) is standard
on most modules to control the bus isolation
switches, a power switch, and any module-
specific functions. The MCUs are intended to
be always on when the node is operating, (with
a power overhead as low as .05 mW). They
network with each other over I2C to facilitate
module discovery and coordinate access to the
channels using a common messaging protocol.

Figure 3 contains a diagram of the features
common to each module, as well as an optional
processor expansion bus so that high-speed,
high-power peripherals, (USB, Compact Flash,
LCD, and AC97 audio), can be used in the
stack or removed for low-power operation.

Figure 3: Power-aware module diagram



4 Available Modules

Our hardware modules are small boards ap-
proximately 6.5×4.5cm (2.5×1.75"), with a
180-pin connector on either side. So far, we
have designed, built, and tested 4 modules, 3
of which are shown in Figures 4 and 5.

PXA A module including an Intel PXA255
XScale processor, 64MB of SDRAM and
32MB of Flash. This board supports dy-
namic voltage scaling, an active clock rate
range of 100-400MHz, and a 33MHz idle
mode. An SA-1111 coprocessor provides
support for USB master and two Compact
Flash cards. All interface lines are routed
to the stack connector.

ADC A four-channel, 12-bit analog-to-digital
converter module. The MCU has suffi-
cient memory for a dedicated 7kB sam-
ple buffer. Basic signal processing can
be performed by the local MCU or sam-
ples can be efficiently transmitted over an
SPI interface to the PXA module for ad-
vanced processing. An important point is
that the PXA255 processor can be off or
suspended during data sampling.

IOB The power & I/O board is the only re-
quired module in the stack. It provides the
primary power supply and contains most
of the digital I/O connectors, (USB mas-
ter and slave, SPI, I2C, and UART).

FPGA This module was developed as an em-
ulation board for a low-power DSP be-
ing developed at MIT[15], but is interest-
ing for other high-performance applica-
tions. It contains a Xilinx Virtex-II 3000
FPGA, 2MB of synchronous SRAM, and
32MB of SDRAM. This module operates
as a coprocessor on the memory bus of the
PXA255 and supports the two SPI chan-
nels on the stack.

Figure 4: PXA, ADC, and IOB modules at ac-
tual size

Figure 5: Stacked modules



We also have a Compact Flash (CF) board,
two of which can be placed into the stack.
This board connects to the processor expansion
bus so that it acts as a daughter-board of the
PXA module rather than an independent mod-
ule. Figure 6 shows a stack consisting of IOB
and PXA modules along with a CF board pop-
ulated with a CF ethernet adapter.

Figure 6: Stack including CF board

Table 1 shows design-time estimates of the
power consumed by each module for various
operational modes. In the “off” mode every-
thing on the module is powered off except for
the power-control MCU. The PXA module has
the widest operational power range due to the
the range of processor clock rates and various
possibilities in processor and memory utiliza-
tion. Figure 7 provides more details of the
how the PXA module power can scale from
0.05 mW to 1.5 W. The innermost portion of
this diagram includes figures for the overhead
of power conversion and the 32kHz MCU on
the IOB module.

Module Mode Power
PXA off 0.05 mW
PXA suspended 2.5 - 7.5 mW
PXA active 150 - 1530 mW
IOB active 0.1 mW
ADC off 0.05 mW
ADC active 40 mW

Table 1: Power modes for various modules

5 Impact on Linux

In a conventional hub-and-spoke model, Linux
runs on a central processor and manages some
number of peripheral devices. In contrast, our
distributed architecture places Linux on an au-
tonomous module which is a peer to other
modules. Any other module might request a
power transition of the Linux module, from off
to powered, from suspended to active, etc.

The efficiency of these power transitions is
a critical component of the average system
power. The distributed platform is designed
to achieve low average system power through
aggressive duty-cycling of high-powered com-
ponents. The time and energy spent during
power-mode transitions is overhead that must
be amortized, imposing limits on practical duty
cycles that can be used.

We are currently using Linux version 2.4.21
with the standard ARM and PXA patches as
well as customizations for our PXA module.
The user-level software distribution is derived
primarily from the handhelds.org[11] Famil-
iar distribution. Our reference sensor appli-
cation (see Section 6) does not turn the PXA
module off, but does suspend/resume the pro-
cessor aggressively to achieve active operation
for a few milliseconds once per second. The
time spent during suspend/resume is divided
between time spent in driver callbacks and time
spent in the kernel proper. Table 2 shows the
times we have measured for these transitions
on our PXA module.

Transition Time
Suspend drivers 507 ms
Suspend kernel 13 ms
Resume kernel 78µs
Resume drivers 25 ms

Table 2: Linux transitions with driver callbacks



Figure 7: PXA module power states

We expect the suspend/resume transitions of
the Linux kernel itself to behave in a symmetric
fashion. However, we measured a very respon-
sive resume time of 78µs and a much slower
suspend time of 13 ms. We do not yet have a
complete explanation for why the suspend pro-
cess is so much slower, although we have ac-
counted for a 1 ms delay that is caused by the
MCU on our PXA board, and therefore not a
feature of the standard Linux kernel.

A much more significant problem is the time
spent in the power management callbacks of
various subsystems and drivers. A suspend
time of 520ms spells disaster for an application
such as the one described in Section 6.

We quickly tracked down the source of this
long suspend time to the USB OHCI driver
(hcd). An ill-fated decision in our design was
the choice of the SA-1111 coprocessor. One
difficulty we encountered was that we had to
provide our own suspend/resume callbacks as
they do not exist for the SA-1111-based hcd in

the standard kernel. To simplify the task, we
have ported the PCI-based OHCI code which
contains a call tomdelay (500) along with
the comment, “Suspend chip and let things set-
tle down a bit”. This single 500ms delay ac-
counts for over 98% of the time required to
suspend drivers. We suspect that this constant
can be safely reduced so that much of the time
lost during suspend can be recovered. Even so,
USB-related timeouts, etc. are on the order of
milliseconds—orders of magnitude more than
the time required by the kernel.

Clearly, this poses a serious problem for ap-
plications with a high duty cycling require-
ment. We are currently working around the
long driver suspend times by simply remov-
ing drivers for non-essential devices and sub-
systems, (such as SA-1111), prior to running
an application with a restricted power budget.
This allows the convenience of things such as
using a USB 802.11 adapter during develop-
ment and debugging without the long suspend
times of the USB drivers during execution.



6 Results

We implemented a vehicle tracking algorithm
using 4-channel acoustic beamforming. In this
application, data is continually sampled at a
rate of 1kHz, but signal processing only needs
to be performed at a maximum rate of 1Hz.

In previous work[13], this algorithm was im-
plemented on a successor to the WINS node,
(a hub-and-spoke platform with an Intel SA-
1110 processor). Although efficient signal pro-
cessing software was developed, system power
savings were modest since the processor had
to remain active (yet mostly idle) at all times
simply to drive data collection.

We have ported the algorithm to the distributed
platform described in this paper. On this plat-
form, the signal processing for one second’s
worth of data can be completed in 3 ms by
the PXA255 processor running at 100MHz.
Since this is a newer processor than the SA-
1110 of the WINS platform, direct compari-
son of power numbers between the two plat-
forms would be unfair. Instead, we estimate
the power needed for two implementations of
the algorithm on the distributed node.

The first version is intended to behave as if in a
hub-and-spoke system. The processor remains
active at all times to store samples into main
memory. The second version takes advantage
of the distributed nature of the platform. Linux
on the PXA module is suspended as much as
possible while the ADC module continues to
sample and buffer data. This approach adds
the overhead needed to suspend/resume Linux
and to transfer data from the ADC module to
the PXA module over the SPI channel. The
amount of data to be transferred is 8192 bytes,
(4 channels∗ 1024 samples/s∗ 2 bytes/sample
∗ 1 s). The SPI transfer rate is 1.8 Mbps yield-
ing a total transfer time of 36.4 ms.

We measured the power consumed by the PXA
module at two different stages in the algo-
rithm. During active computation the PXA
module consumes 528 mW. When mostly idle,
(eg. when transferring 1kHz data from the
ADC module), it consumes 370 mW. We have
not yet measured the average power consumed
during the suspend or resume transitions, but
we use an estimate of 370 mW. This estimate
should be conservative as the actual power us-
age should ramp down to less than 10 mW dur-
ing the transition.

Combining these measurements with estimates
from Table 1 and the time measurements from
Table 2, we compute the total energy spent to
compute one result per second. From this we
can determine the average power necessary for
the complete algorithm. These results are given
for both versions of the algorithm in Tables 3
and 4.

Module/Mode Power Time Energy
IOB active 0.1 mW 1 s 0.1 mJ

ADC active 40 mW 1 s 40.0 mJ
PXA active 528 mW 3 ms 1.6 mJ
PXA idle 370 mW 997 ms 368.9 mJ

Estimated energy per second410.6 mJ
Estimated system power: 411 mW

Table 3: Hub-and-spoke power requirements
for beamforming

Module/Mode Power Time Energy
IOB active 0.1 mW 1.0 s 0.1 mJ

ADC active 40 mW 1.0 s 40.0 mJ
PXA suspended 7.5 mW 948 ms 7.1 mJ
PXA resuming 370 mW 78µs 28.9µJ
PXA transferring 370 mW 36.4 ms 13.5 mJ
PXA processing 528 mW 3 ms 1.6 mJ
PXA suspending 370 mW 13 ms 4.8 mJ

Estimated energy per second95.9 mJ
Estimated system power: 96 mW

Table 4: Distributed power requirements for
beamforming



7 Conclusion

The 96 mW beamforming result marks a suc-
cess for the distributed sensor platform—a 4X
power reduction over the 411 mW required for
the hub-and-spoke platform. This shows that it
is possible to take advantage of 32-bit, Linux
processing without average power exceeding
the 10-100 mW range of a less-capable sensor
based on a 8-bit microcontroller, (ie. a Mote).

8 Future Work

The field of power-aware sensing is rich, and
we have only just begun to explore the possibil-
ities, even within our own platform. Many ap-
plications require a much smaller power budget
than the 96 mW result we have demonstrated.
Our long-term goal is to design sensors capa-
ble of operating entirely from scavenged en-
ergy, (eg. solar), which requires operation in
the range of 1 mW[5].

We are currently building a low-power “trip-
wire” module which will implement single-
channel acoustic vehicle detection. This will
allow the PXA module to be completely off
when a vehicle is not present. We antici-
pate that this will allow beamforming within
a power budget as low as 10 mW.

As mentioned in Section 5, there remains a fair
amount of engineering and research with re-
gards to the role of Linux within a distributed
sensor. This includes reducing the time re-
quired in the power management callbacks of
all relevant drivers as much as possible. An
additional task is to move from Linux version
2.4 to 2.6. The dynamic nature of the new uni-
fied device model in 2.6 should make a natural
fit with a platform consisting of autonomous
modules that can be powered on and off at any
point.

Additionally, new power-scheduling research
could better take advantage of the wide range
of power modes in this platform. For exam-
ple, Linux could monitor the frequency and
duty cycles of the power-up/shutdown and sus-
pend/resume cycles. It would then be possi-
ble to provide intelligent feedback into these
cycles based on the relative overhead of each
transition. This work would complement cur-
rent efforts that dynamically adjust voltage and
clock rate based on system load.

9 Availability

This work has been developed as part of the
Power-Aware Sensing Tracking and Analysis
(PASTA)project, but we hope that it will be
useful to researchers and hobbyists with a wide
range of applications. To that end we are
working toward making the hardware mod-
ules available at cost. Further details will be
made available at the PASTA website,http:
//pasta.east.isi.edu . All of the soft-
ware developed under PASTA is also available
there under the terms of the GNU General Pub-
lic License (GPL).
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